Refine Your Search

Topic

Author

Search Results

Technical Paper

A Theoretical and Experimental Study of the Regeneration Process in a Silicon Carbide Particulate Trap Using a Copper Fuel Additive

1997-02-24
970188
The purpose of this study was to investigate the pressure drop and regeneration characteristics of a silicon carbide (SiC) wall-flow diesel particulate filter. The performance of a 25 μm mean pore size SiC dual trap system (DTS) consisting of two 12 liter traps connected in parallel in conjunction with a copper (Cu) fuel additive was evaluated. A comparison between the 25 μm DTS and a 15 μm DTS was performed, in order to show the effect of trap material mean pore size on trap loading and regeneration behavior. A 1988 Cummins LTA 10-300 diesel engine was used to evaluate the performance of the 15 and 25 μm DTS. A mathematical model was developed to better understand the thermal and catalytic oxidation of the particulate matter. For all the trap steady-state loading tests, the engine was run at EPA mode 11 for 10 hours. Raw exhaust samples were taken upstream and downstream of the trap system in order to determine the DTS filtration efficiency.
Technical Paper

A Turbocharged Spark Ignition Engine with Low Exhaust Emissions and Improved Fuel Economy

1973-02-01
730633
Turbocharging, in addition to increasing an engine's power output, can be effectively used to maintain exhaust emission levels while improving fuel economy. This paper presents the emission and performance results obtained from a turbocharged multicylinder spark ignition engine with thermal reactors and exhaust gas recirculation (EGR) operated at steady-state, part-load conditions for four engine speeds. When comparing a turbocharged engine to a larger displacement naturally aspirated engine of equal power output, the emissions expressed in grams per mile were relatively unchanged both with and without EGR. However, turbocharging provided an average of 20% improvement in fuel economy both with and without EGR. When comparing the turbocharged and nonturbocharged versions of the same engine without EGR at a given load and speed, turbocharging increased the hydrocarbon (HC) and carbon monoxide (CO) emissions and decreased oxides of nitrogen (NOx) emissions.
Technical Paper

Advances in Quantitative Analytical Ferrography and the Evaluation of a High Gradient Magnetic Separator for the Study of Diesel Engine Wear

1982-02-01
821194
Several sources of variation in quantitative analytical ferrography are investigated. A standard ferrography analysis procedure is developed. Normalization of ferrographic data to account for the amount of oil used to make the ferrograms is discussed. Procedures to minimize the errors involved with calculating three quantitative ferrography parameters: the area covered by the large particles, AL (%/ml of oil), the area covered by the small particles, AS (%/ml of oil) and Area Under the Curve, AUC, (%-mm/ml of oil) are outlined. Ferrographic data are presented which show that the volume and dilution ratio of the oil sample being analyzed have a major effect on the accuracy of the analysis. Several variables which influence the area covered readings of the particle deposit on a ferrogram are discussed. The accuracy of quantitative analytical ferrography is assessed.
Technical Paper

An Experimental Study of Active Regeneration of an Advanced Catalyzed Particulate Filter by Diesel Fuel Injection Upstream of an Oxidation Catalyst

2006-04-03
2006-01-0879
Passive regeneration (oxidation of particulate matter without using an external energy source) of particulate filters in combination with active regeneration is necessary for low load engine operating conditions. For low load conditions, the exhaust gas temperatures are less than 250°C and the PM oxidation rate due to passive regeneration is less than the PM accumulation rate. The objective of this research was to experimentally investigate active regeneration of a catalyzed particulate filter (CPF) using diesel fuel injection in the exhaust gas after the turbocharger and before a diesel oxidation catalyst (DOC) and to collect data for extending the MTU 1-D 2-layer model to include the simulation of active regeneration. The engine used in this study was a 2002 Cummins ISM turbo charged 10.8 L heavy duty diesel engine with cooled EGR. The exhaust after-treatment system consisted of a Johnson Matthey DOC and CPF (a CCRT®).
Technical Paper

An Experimental Study of Particulate Thermal Oxidation in a Catalyzed Filter During Active Regeneration

2009-04-20
2009-01-1474
Active regeneration experiments were performed on a Cummins 2007 aftertreatment system by hydrocarbon dosing with injection of diesel fuel downstream of the turbocharger. The main objective was to characterize the thermal oxidation rate as a function of temperature and particulate matter (PM) loading of the catalyzed particulate filter (CPF). Partial regeneration tests were carried out to ensure measureable masses are retained in the CPF in order to model the oxidation kinetics. The CPF was subsequently re-loaded to determine the effects of partial regeneration during post-loading. A methodology for gathering particulate data for analysis and determination of thermal oxidation in a CPF system operating in the engine exhaust was developed. Durations of the active regeneration experiments were estimated using previous active regeneration work by Singh et al. 2006 [1] and were adjusted as the experiments progressed using a lumped oxidation model [2, 3].
Technical Paper

An Experimental and Modeling Study of Cordierite Traps - Pressure Drop and Permeability of Clean and Particulate Loaded Traps

2000-03-06
2000-01-0476
A model for calculating the trap pressure drop, particulate mass inside the trap and various particulate and trap properties was developed using the steady-state data and the theory developed by Konstandopoulos & Johnson, 1989. Changes were made with respect to the calculation of clean pressure drop, particulate layer porosity and the particulate layer permeability. This model was validated with the data obtained from the steady-state data run with different traps supplied by Corning Inc. The data were collected using the 1988 Cummins L-10 heavy-duty diesel engine using No.2 low sulfur diesel fuel. The three different traps were EX 80 (100 cell density), EX 80 (200 cell density) and EX 66 (100 cell density) all with a 229 mm diameter and 305 mm length. These traps were subjected to different particulate matter loadings at different speeds. The traps were not catalyzed.
Technical Paper

An Experimental and Modeling Study of Reaction Kinetics for a Cu-Zeolite SCR Catalyst Based on Engine Experiments

2013-04-08
2013-01-1054
A high-fidelity multi-step global kinetic Selective Catalytic Reduction (SCR) model which can predict SCR performance in engine exhaust systems is desirable for optimizing the SCR system, designing on-vehicle control systems and on-board diagnostic (OBD) functions. In this study, a Cu-zeolite SCR catalyst in the exhaust of a 2010 Cummins 6.7L ISB diesel engine was experimentally studied under both steady-state and transient conditions. Steady-state engine tests spanned SCR inlet temperatures from 250 to 400°C with a constant space velocity of 60 khr-1. A 1-D Cu-zeolite model originally developed from reactor data was improved and calibrated to the steady-state engine experimental data. The calibrated model is capable of predicting NO/NO₂ reduction, NH₃ slip, and NH₃ storage associated phenomena.
Technical Paper

An Experimental and Modeling Study of a Diesel Oxidation Catalyst and a Catalyzed Diesel Particulate Filter Using a 1-D 2-Layer Model

2006-04-03
2006-01-0466
Modeling of diesel exhaust after-treatment devices is a valuable tool in the development and performance evaluation of these devices in a cost effective manner. Results from steady state loading experiments on a catalyzed particulate filter (CPF) in a Johnson Matthey CCRT®, performed with and without the upstream diesel oxidation catalyst (DOC) are described in this paper. The experiments were performed at 20, 40, 60 and 75% of full load (1120 Nm) at rated speed (2100 rpm) on a Cummins ISM 2002 heavy duty diesel engine. The data obtained were used to calibrate one dimensional (1-D) DOC and CPF models developed at Michigan Technological University (MTU). The 1-D 2-layer single channel CPF model helped evaluate the filtration and passive oxidation performance of the CPF. DOC modeling results of the pressure drop and gaseous emission oxidation performance using a previously developed model are also presented.
Technical Paper

Analysis of the Physical Characteristics of Diesel Particulate Matter Using Transmission Electron Microscope Techniques

1979-02-01
790815
An Andersen Impactor was used to collect particulate samples in both the undiluted and diluted exhaust from a Caterpillar 3150 diesel engine operated on the EPA 13-mode cycle. A total of 24 samples were examined using the transmission electron microscope and approximately 300 photomicrographs were taken. The microscope analysis and photomicrographs revealed details concerning the physical characteristics of the particulate and permitted a direct visual comparison of the samples collected. The photomicrographs were used to obtain diameter measurements of the basic individual spherical particles that comprise the much larger aggregates/agglomerates. Nearly 11,000 basic particles were measured and the observed range of diameters was 70-1200 Å. The mean particle diameters in the undiluted and diluted exhaust samples were 479 Å and 436 Å respectively. respectively. A respectively. 436 A respectively.
Technical Paper

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-04-16
2012-01-0837
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO₂ oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Technical Paper

Collection and Characterization of Particulate and Gaseous-Phase Hydrocarbons in Diesel Exhaust Modified by Ceramic Particulate Traps

1987-02-01
870254
Protocols for sampling and analysis of particulate and gaseous-phase diesel emissions were developed to characterize the chemical and biological effects of using ceramic traps as particulate control devices. A stainless-steel sampler was designed, constructed, and tested with XAD-2 sorbent for the collection of volatile organic compounds (VOC). Raw exhaust levels of TPM and SOF and mutagenicity of the SOF and VOC were all reduced when the traps were used. Hydrocarbon mass balances indicated that some hydrocarbons were not collected by the sampling system and that the proportions of collected SOF and VOC were altered by the use of the traps. SOF hydrocarbons appeared to be derived mainly from engine lubricating oil; VOC hydrocarbons were apparently fuel-derived. There was no apparent effect on SOF mutagenicity due to either sampling time or reexposure of particulate to exhaust gases.
Technical Paper

Cooperative Evaluation of Techniques for Measuring Nitric Oxide and Carbon Monoxide - A Report of the Program Group on Diesel Exhaust Composition of the Air Pollution Advisory Committee of the Coordinating Research Council, Inc.

1972-02-01
720104
A Coordinating Research Council cooperative program was conducted to evaluate the measurement methods used to analyze nitric oxide and carbon monoxide in diesel exhaust. Initially, a single-cylinder test engine was circulated among participants with poor results. Tests were then conducted at one site using a multicylinder diesel engine. Six organizations participated in the program. Exhaust analyses were conducted at steady-state engine conditions and on a 3 min cycle test. Span gases of unknown concentration were also analyzed. The participants results varied but averaged less than ±5% standard deviation both within (repeatability) and among (reproducibility) the instruments. The short cycle test was in good agreement with the steady-state measurements. No significant difference in the use of Drierite, nonindicating Drierite, or Aquasorb desiccants was evident in sampling system tests.
Technical Paper

Design and Computer Simulation of Microprocessor Controlled Lubricating Oil Cooling System for Truck Diesel Engine

1988-02-01
880488
A microprocessor controlled lubricating oil cooling system of truck diesel engine was designed to minimize the sump oil temperature fluctuation during start-up and nonsteady engine operations. Model reference adaptive control method is utilized in the control system design. The analysis involved in the design of the microprocessor controlled oil cooling system, and the applications of a special vehicle-engine-cooling system (VEC) computer simulation code in the implementation and testing of the model reference adaptive control strategy are described. Using the VEC simulation code, the performance of the microprocessor controlled oil cooling system and the conventionally controlled oil cooling systems were compared for the ATB, temperature disturbances, and cold weather transient tests. An explanation of each test, as well as a review of the results of comparison tests are presented.
Technical Paper

Design and Development of a Model Based Feedback Controlled Cooling System for Heavy Duty Diesel Truck Applications Using a Vehicle Engine Cooling System Simulation

2001-03-05
2001-01-0336
A thermal management system for heavy duty diesel engines is presented for maintaining acceptable and constant engine temperatures over a wide range of operational conditions. It consists of a computer controlled variable speed coolant pump, a position controlled thermostat, and a model-based control strategy. An experimentally validated, diesel engine cooling system simulation was used to demonstrate the thermal management system's capability to reduce power consumption. The controller was evaluated using a variety of operating scenarios across a wide range of loads, vehicle speeds, and ambient temperatures. Three metrics were used to assess the effects of the computer controlled system: engine temperature, energy savings, and cab temperature. The proposed control system provided very good control over the engine coolant temperatures while maintaining engine metal temperatures within a desired range.
Technical Paper

Development and Evaluation of a Diesel Powered Truck Cooling System Computer Simulation Program

1982-02-01
821048
A computer simulation program was developed to simulate the thermal responses of an on-highway, heavy duty diesel powered truck in transient operation for evaluation of cooling system performance. Mathematical models of the engine, heat exchangers, lubricating oil system, thermal control sensors (thermostat and shutterstat), auxiliary components, and the cab were formulated and calibrated to laboratory experimental data. The component models were assembled into the vehicle engine cooling system model and used to predict air-to-boil temperatures. The model has the capability to predict real time coolant, oil and cab temperatures using vehicle simulation input data over various routes.
Technical Paper

Development of a 1-D Catalyzed Diesel Particulate Filter Model for Simulation of the Oxidation of Particulate Matter and Gaseous Species During Passive Oxidation and Active Regeneration

2013-04-08
2013-01-1574
Numerical modeling of aftertreatment systems has been proven to reduce development time as well as to facilitate understanding of the internal physical and chemical processes occurring during different operating conditions. Such a numerical model for a catalyzed diesel particulate filter (CPF) was developed in this research work which has been improved from an existing numerical model briefly described in reference. The focus of this CPF model was to predict the effect of the catalyst on the gaseous species concentrations and to develop particulate matter (PM) filtration and oxidation models for the PM cake layer and substrate wall so as to develop an overall model that accurately predicts the pressure drop and PM oxidized during passive oxidation and active regeneration. Descriptions of the governing equations and corresponding numerical methods used with relevant boundary conditions are presented.
Technical Paper

Development of the Enhanced Vehicle and Engine Cooling System Simulation and Application to Active Cooling Control

2005-04-11
2005-01-0697
The increasing complexity of vehicle engine cooling systems results in additional system interactions. Design and evaluation of such systems and related interactions requires a fully coupled detailed engine and cooling system model. The Vehicle Engine Cooling System Simulation (VECSS) developed at Michigan Technological University was enhanced by linking with GT-POWER for the engine/cycle analysis model. Enhanced VECSS (E-VECSS) predicts the effects of cooling system performance on engine performance including accessory power and fuel conversion efficiency. Along with the engine cycle, modeled components include the engine manifolds, turbocharger, radiator, charge-air-cooler, engine oil circuit, oil cooler, cab heater, coolant pump, thermostat, and fan. This tool was then applied to develop and simulate an actively controlled electric cooling system for a 12.7 liter diesel engine.
Technical Paper

Development of the Methodology for Quantifying the 3D PM Distribution in a Catalyzed Particulate Filter with a Terahertz Wave Scanner

2014-04-01
2014-01-1573
Optimizing the performance of the aftertreatment system used on heavy duty diesel engines requires a thorough understanding of the operational characteristics of the individual components. Within this, understanding the performance of the catalyzed particulate filter (CPF), and the development of an accurate CPF model, requires knowledge of the particulate matter (PM) distribution throughout the substrate. Experimental measurements of the PM distribution provide the detailed interactions of PM loading, passive oxidation, and active regeneration. Recently, a terahertz wave scanner has been developed that can non-destructively measure the three dimensional (3D) PM distribution. To enable quantitative comparisons of the PM distributions collected under different operational conditions, it is beneficial if the results can be discussed in terms of the axial, radial, and angular directions.
Technical Paper

Effect Of Swirl On Flame Propagation In A Spark Ignition Engine

1962-01-01
620192
Flame arrival data, determined by ionization gaps and a radiation detector, are presented for a multi-hole CFR engine equipped with six spark plugs spaced around the periphery of the combustion chamber, using a shrouded intake valve to produce swirl and with a standard valve to eliminate it. For results with the shrouded valve, path equations for the burnt gases are derived for several velocity distributions that satisfy the Navier-Stokes equations of motion for the unburned gas. Previous velocity distribution and observed flame movement data are presented in support of the derived model for the path of the burnt gases.
Journal Article

Effects of Biodiesel Blends on Particulate Matter Oxidation in a Catalyzed Particulate Filter during Active Regeneration

2010-04-12
2010-01-0557
Active regeneration experiments were performed on a production diesel aftertreatment system containing a diesel oxidation catalyst and catalyzed particulate filter (CPF) using blends of soy-based biodiesel. The effects of biodiesel on particulate matter oxidation rates in the filter were explored. These experiments are a continuation of the work performed by Chilumukuru et al., in SAE Technical Paper No. 2009-01-1474, which studied the active regeneration characteristics of the same aftertreatment system using ultra-low sulfur diesel fuel. Experiments were conducted using a 10.8 L 2002 Cummins ISM heavy-duty diesel engine. Particulate matter loading of the filter was performed at the rated engine speed of 2100 rpm and 20% of the full engine load of 1120 Nm. At this engine speed and load the passive oxidation rate is low. The 17 L CPF was loaded to a particulate matter level of 2.2 g/L.
X